Электрофотография - Definition. Was ist Электрофотография
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Электрофотография - definition

МЕТОД РЕПРОГРАФИИ, ИСПОЛЬЗУЮЩИЙ ДЛЯ ПЕРЕНОСА ТОНЕРА (СУХИХ ЧЕРНИЛ) ЭЛЕКТРИЧЕСКИЙ ЗАРЯД
Ксерография; Электрографическое копирование; Ксерографическая печать; Электрофотография; Ксерокопирование; Ксерокопия; Xerography
  • Схематичное изображение электрографического процесса.
  • Общая схема электрографии (ксерографии): 1) На поверхность [[фотобарабан]]а наносится электрический заряд. 2) Отражённый от копируемого документа свет выборочно разряжает участки барабана. 3) На барабан наносится тонер, он задерживается на участках, сохранивших заряд. 4) Тонер переносится с барабана на бумагу, имеющую больший отрицательный заряд.

Электрофотография         

процессы получения фотографических. изображений на светочувствительных электрофотографических материалах (ЭФМ) - слоях фотопроводников (ФП, см. Фотопроводимость) с высоким темновым удельным сопротивлением, наносимых на проводящую основу (подложку). Перед получением изображения слой ФП "очувствляют", заряжая его ионами, обычно из коронного разряда (См. Коронный разряд) в воздухе, а подложку заземляют; затем равномерно заряженные ЭФМ экспонируют, в результате чего с освещенных участков ФП на подложку "стекает" часть заряда, тем большая, чем выше Освещённость участка. Возникает Скрытое фотографическое изображение (СИ) объекта в виде потенциального рельефа, т. е. распределения по поверхности ФП потенциала электростатического (См. Потенциал электростатический), которое соответствует распределению освещённости в регистрируемом изображении. СИ затем переводят в видимое изображение (визуализируют). Т. о., в Э. используют формирование в ЭФМ при его "очувствлении" двойного электрического слоя (См. Двойной электрический слой), образуемого поверхностным зарядом и возникающим в объёме ФП или проводящей подложке экранирующим зарядом с последующей локальной модуляцией мощности слоя (произведения поверхностной плотности заряда на толщину двойного слоя) за счёт фотопроводимости.

Существует несколько обособленных направлений Э., различающихся главным образом способом визуализации СИ. В классической Э. СИ визуализируют заряженными окрашенными частицами порошка (в сухом состоянии или диспергировакными в жидкости) с последующим переносом на нефоточувствительную основу либо без такого переноса. Процессы Э., в которых для визуализации применяют сухой порошок, часто называют ксерографией. Изменяя знак заряда и цвет порошка, можно получить как негативное, так и позитивное черно-белое, окрашенное или многоцветное изображение. В Э. со считыванием СИ используют микрозондовую технику (оптические, электронные или электростатические микрозонды, производящие в процессе) считывания поэлементную "развёртку" СИ). В фототермопластической Э. обычно предусматривают возможность термопластической визуализации путём преобразования потенциального рельефа в рельеф толщины за счёт термомеханических свойств ЭФМ (см. также Термопластическая запись, Фазовая рельефография). В одном из направлений Э. в качестве ЭФМ используют фотоэлектреты (см. Электреты), где СИ возникает в результате частичного разрушения под действием света устойчивой электрической поляризации слоя ЭФМ. В некоторых случаях, например в Э. со считыванием СИ, за счёт подключения внешних источников энергии возможно усиление СИ, в определённой степени аналогичное усилению в классическом фотографическом процессе; в других случаях, например при визуализации порошком, усиления не происходит. Светочувствительность 5 наиболее широко применяемых ЭФМ и методов Э.: 1-2 ед. ГОСТа для слоев аморфного селена с сухим порошковым проявлением (при разрешающей способности (См. Разрешающая способность) 40-60 мм-1); 0,2-0,3 ед. ГОСТа для сенсибилизированных красителями слоев окиси цинка, диспергированной в связующей среде (разрешение при жидкостном проявлении 60-100 мм-1 и выше), и слоев на основе органической ФП: (типа поливинилкарбазола). Светочувствительность ЭФМ при электронном считывании, обеспечивающем усиление СИ, достигает 500 ед. ГОСТа.

Чувствительность ЭФМ лежит в спектральном диапазоне от рентгеновской области до ближней инфракрасной области. Изменение длинноволновой границы чувствительности в этом диапазоне достигается методами сенсибилизации фотоэффекта внутреннего (См. Фотоэффект внутренний) в ФП. Кроме обычной сенсибилизации (См. Сенсибилизация) оптической, в Э. используют структурную и инжекционную сенсибилизацию. При структурной сенсибилизации изменяют молекулярную и надмолекулярную структуру ФП и макроструктуру слоя. Этот метод применяют как для органических ФП (полимеры винилового ряда, органические полимерные комплексы на основе поливинилкарбазола и др.), так и для неорганических, прежде всего для слоев на основе селена и его сплавов (с теллуром, мышьяком, таллием, кадмием, германием); он включает, например, формирование в ЭФМ электронно-дырочной гетероструктуры (см. Полупроводниковый гетерапереход (См. Полупроводниковый гетеропереход)) или структуры типа ФП - диэлектрик. Явление фотоинжекции носителей заряда в фотополупроводники используют, например, для сенсибилизации слоев поливинилкарбазола селеном (инжекционная сенсибилизация; об инжекции см. ст. Полупроводники, разделы Неравновесные носители тока и Фотопроводимость полупроводников).

Среди совокупности характеристик Э. некоторые (или их сочетания) часто принципиально недостижимы для других фотографических процессов (обработка в реальном масштабе времени, т. е. одновременно с протеканием весьма кратковременных процессов; возможность длительного хранения СИ, иногда даже на свету; возможность многократной перезаписи информации; экономические показатели), что обеспечило Э. широкое применение в малотиражном оперативном размножении текстовых и графических материалов - репрографии. Э. используют как метод регистрации и исследований во многих областях науки и техники, например в рентгенографии, голографии, спектроскопии, физике полупроводников.

Лит.: Шафферт Р., Электрофотография, пер. с англ., М., 1968; Гренишин С. Г., Электрофотографический процесс, М., 1970; Процессы и аппараты электрофотографии, Л., 1972.

Ю. А. Черкасов.

ЭЛЕКТРОФОТОГРАФИЯ         
совокупность методов получения фотографических изображений, основанных на преобразовании видимого изображения в распределение (рельеф) электростатического потенциала в слое полупроводника с последующим обратным преобразованием - визуализацией рельефа. Визуализация осуществляется окрашенными частицами сухого порошка (ксерография) с помощью оптических, электростатических или электронных микрозондов, преобразованием потенциального рельефа в рельеф толщины и др.
КСЕРОГРАФИЯ         
электрофотография на фотопроводящем слое диэлектрика или высокоомного полупроводника, способ копирования различных документов. Такой фотографический процесс широко применяется в учрежденческих копировальных аппаратах - ксероксах.
На поверхность полупроводника с высоким сопротивлением, обладающего свойством фотопроводимости, т.е. приобретающего электропроводность при освещении, равномерно наносится электростатический заряд. Затем на заряженную поверхность проецируется изображение копируемого документа. С освещенных участков поверхности заряд стекает, а оставшийся заряд образует скрытое электрическое изображение документа. Оно проявляется путем нанесения на поверхность пластины заряженного порошка пластмассы.
В одном варианте ксерографии в качестве фотопроводящего материала используется селен, которым покрывают барабан или пластину. После проявления изображения поверх селенового покрытия накладывают лист обычной бумаги и электризуют его. Заряженная бумага притягивает порошок, налипший на селен. Полученное изображение закрепляют на бумаге, расплавляя порошок путем нагревания. В другом варианте ксерографии используется бумага с фотопроводящим покрытием, например из оксида цинка. Изображение формируется непосредственно на такой бумаге и закрепляется, так что этап переноса изображения отсутствует.
Первое ксерографическое изображение получил Ч.Карлсон в 1938. Процесс далее разрабатывался Институтом им. Бателла, американской некоммерческой научно-исследовательской организацией. В 1947 коммерческие права на изобретение Карлсона приобрела компания "Халоид", выпускавшая фотобумагу. Она и ввела термин "ксерография", образовав его от греческих слов ксеро (сухой) и графео (пишу). Вскоре компания получила название "Халоид ксерокс", а затем - просто "Ксерокс".
Первый автоматический ксерографический копировальный аппарат офисного назначения был выпущен в 1960. Спектр новых ксерографических аппаратов простирается от высокоскоростных копировальных автоматов и печатных множительных машин до устройств электросвязи, которые способны передавать изображения и их ксерографические репродукции на тысячи километров по телефонным сетям, коаксиальному кабелю и радиорелейным СВЧ-линиям.

Wikipedia

Электрография

Электрогра́фия, ксерогра́фия (от др.-греч. ξερός [kseros], лат. xeros «сухой» + графия) — метод репрогра́фии, использующий для переноса тонера (сухих чернил) электрический заряд. На принципе электрографии работают лазерные принтеры и копировальные аппараты.

Was ist Электрофотогр<font color="red">а</font>фия - Definition